R/peekds_validators.R
ds.validate_table.Rd
Check if a dataframe/table is compliant to peekbank json before database import
ds.validate_table(
df_table,
table_type,
cdi_expected,
dir_csv,
is_null_field_required = TRUE
)
the dataframe to be saved
the type of dataframe, for the most updated table types specified by schema, please use functionds.list_ds_tables()
by default is set to TRUE which means that all the columns in the json file are required; when user specifically sets this to FALSE, then the fields that are allowed null values are not required.
an empty string when the input data frame is compliant with json specification, such as having all the required columns, primary key field has unique values, etc. Otherwise, the function returns a list of messages describing detailed issues that needs to be fixed
if (FALSE) { # \dontrun{
is_valid <-ds.validate_table(df_table = df_table, table_type = "xy_data", cdi_expected = F, dir_csv = "../processed_data")
} # }